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LIQUID CRYSTALS, 1989, VOL. 4, No. 5, 483-495 

Monte Carlo simulation of a one dimensional classical Heisenberg 
model with long range interactions 

by S. ROMANO 
Department of Physics ‘A. Volta’, The University, 

and Unita ‘G.N.S.M.-C.N.RJC.1.S.M.-M.P.I.’, via A. Bassi 6, 1-27 100 Pavia, Italy 

(Received 15 November 1988; accepted 4 January 1989) 

We have studied a classical system, consisting of three dimensional unit vectors 
associated with a one dimensional lattice { U k ( k  E 2) and interacting via the trans- 
lationally invariant pair potential 

Vk = - ~ r - ” ~ u ,  * u k r  r = lj - kl, E > 0. 

This potential model has been proven rigorously to possess a ferromagnetically 
ordered phase at low but finite temperature. We also consider the pair interaction 
defined by 

the two potential models have the same partition function, and essentially the same 
structural properties, thus V‘ possesses a low-temperature transition to an anti- 
ferromagnetically ordered phase. In turn, V‘ can be regarded as an extreme case 
of a nematogenic lattice model, whose structural properties can still be evaluated 
under V. The system was characterized quantitatively by Monte Carlo simulation, 
whose results are compatible with a second order transition at ‘&*(=~T‘,.E) of 
1.48 0.02. Comparison with molecular field and spherical model treatments is 
also reported; the former, but not the latter, agrees reasonably with the simulation 
results. 

1. Introduction 
Over the past 20 years, the study of spin systems associated with a low dimensional 

lattice and interacting via long range potentials has attracted a significant amount of 
theoretical work. The present paper continues this tradition, considering a potential 
model known rigorously to possess an ordering transition at finite temperature, and 
using numerical simulation to elucidate its physical properties. We consider a classical 
system, consisting of n component unit vectors {uk} ,  associated with a d dimensional 
lattice, Z d ;  xk denote their coordinates, and Yk is their translationally invariant pair 
interaction potential. When n = 2, the unit vectors lie in a plane (in the lattice plane 
when d = n = 2); they are then referred to as plane rotators, and their orientation 
in an arbitrary laboratory frame is uniquely defined by a set of angles { ( P k } .  We restrict 
our discussion to isotropic potential models, i.e. functional forms left unchanged by 
applying to all the unit vectors any linear (orthogonal) transformation of the group 
0 (4 

where 

r = rJk = xj - x k ,  r = Irl, z = zJk = U, . uk.  (2) 
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484 S. Romano 

It is worth recalling two important symmetry properties of these potential models: 
(a) Plane rotators: we rewrite the potential (equation (1)) in the slightly more 

general form 

Wm = f(r)'WGz(z)l, (3) 
where m is an arbitrary positive integer, and T, are Tchebyshev polynomials of the 
first kind [l]: 

T,(z) = cos [arcos (mz)] 

= cos [m(cpi - ( ~ k ) l *  (4) 

For given functional forms offand Y, all of the potentials W, have the same partition 
function, and their structural properties can be defined in a manner independent 
of m. 

(b) Spin-flip in bipartite lattices: for any xj = {jIIA = 1, 2, . . , d } ,  we define 
d 

qj = JJ (- l)jA, 
I = I  

the lattice consists of two interpenetrating sublattices, and each lattice nodej belongs 
to either of them, according to the sign of qj ,  and is surrounded by nearest neighbours 
belonging to the other sublattice, then second nearest neighbours belonging to its 
own, and so on. We consider the two potential models 

& = f(r)A(r), y.i = qjqk C k ,  (6) 
where A is an arbitrary odd function of its argument. 

V and V' give the same partition function, and their structural properties 
(e.g. correlation functions and ordering tensors) can be related via the simple 
transformation 

where L is an arbitrary integer, p and v refer to Cartesian components, and ( * * . ) and 
( . . . )' denote averages with respect to V and V', respectively. 

In addition to a few exactly soluble models [2, 31, various rigorous results have 
been obtained, concerning the existence or absence of an ordered phase at low but 
finite temperature, depending on d, n, and the functional form of the potential. For 
example, when f has a finite range, an ordered phase may survive for d = 2, n = 1, 
but it cannot for d = 1 and arbitrary n, nor for d = 2, n 2 2 [2,4]. When d = 2 and 
n = 2, such theorems do not rule out a transition to a low-temperature phase with 
an inverse-power decay of correlations and infinite susceptibility, i.e. a Kosterlitz- 
Thouless transition, whose existence has also been proven rigorously in some cases [5] .  
For comparison, we also mention that, when d = n = 3, nearest-neighbour isotropic 
potential models such as the classical Heisenberg model [4] 

(8) 

Yk = -&P2(rik) (9) 

v. = -&T. ik j k ,  & 0 

or the Lebwohl-Lasher lattice model [6] 

are known to produce overall orientational order; here P2(z)  is the second Legendre 
polynomial. On the other hand, it is by now well known that a long range 
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Simulation of a I D  Heisenberg model 485 

ferromagnetic potential 

c k  = -F(rj/c)Tj5jk, F(r) = +If (r)l (10) 
can stabilize an ordered phase when d < 2, and spin-flip symmetry entails the 
existence of the corresponding antiferromagnetic transition (so that V and V' can 
unambiguously be referred to as ferro and antiferromagnetic representations, 
respectively). Moreover, these results imply the existence of nematic-like order for 
plane rotators when m = 2, i.e. orientational order but no net magnetization. 

We specialize our discussion to the functional forms 

F(r) = r -d-u ,  d = 1 ,  2, a > 0, (1 1) 
whose behaviour has been extensively investigated as a function of d, n, and o. When 
d < 2 and n < 3, a ferromagnetic phase is known to exist only in the following cases 
17- 1 31 

d = l ,  n = l ,  O < a < d ,  

d = l ,  n = 2  3 , O < a < d ,  

d = 2 ,  n = 2 ,  3 , O < a < d .  

These powerful theorems also entail the existence of a disordering transition; on the 
other hand, they do not provide quantitative estimates for, say, the transition 
temperature or order parameters. 

The behaviour of critical exponents in the d - n - (T space has often been 
investigated by renormalization group techniques (see, e.g., [14, 151). The system's 
thermodynamics was calculated explicitly by the spherical model [ 161 treatment, 
which is known to be their exact limit when n tends to infinity [16, 171; rigorous 
bounds on the correlation functions have also been obtained for the disordered phases 
[18, 191. Simulation results for such systems are still rather scarce in the literature (e.g. 
[20-221). The corresponding antiferromagnetic long range models defined by the plus 
sign in equation (10) have been studied far less extensively (e.g. [23]), and no such 
existence theorems are known for them. This is in marked contrast to the wealth of 
results available in the literature for their short range counterparts. From now on, we 
restrict our attention to n = 3 (the classical Heisenberg model), d = 1, so that 
xi = j E 2. As a step towards a better understanding of its physical behaviour, we 
decided to carry out Monte Carlo simulations for a potential model defined by d = 1, 
n = 3, 0 < o < 1 .  When D vanishes the ground state has an infinite energy per 
particle, and order at all finite temperatures, whereas for CJ = 1 the system disorders 
in the thermodynamic limit at all finite temperatures. Simulation requires a more 
precise definition of the potential (i.e. of o), thus it seemed to be both simple and 
reasonable to choose the midpoint a = 1/2, i.e. 

Jk = -&r-3 /2~ ,  (12) 
thus extending previous numerical work on its Ising [24, 251 and plane-rotator [22] 
counterparts. 

The rigorous results obtained by Frohlich et al. [S] ensure the existence of an 
ordered phase at low temperature and numerical simulation helps characterize it 
quantitatively. The ground state energy, in units &/particle, is 

00 

UJ' = - 1 j - 3 / 2  = - [(3/2) = -2.612, (13) 
i =  I 
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486 S. Romano 

where the function is defined by [ I ]  

2. Computational aspects 
The calculations were performed using periodic boundary conditions and the 

Ewald-Kornfeld algorithm for summing the long range interaction [26-281. We 
consider a periodically repeated sample, consisting of N particles, with integer 
coordinates {x, = j }  and fractional ones yi = x,/N, in an arbitrary orientational 
configuration SZ = {uk}. The relevant formulae for the potential energy of the 
configuration, based on Tosi's review [28], are 

where 

D, = n 1 ,/hT(- 1/4, (nh/w)')[C,2(h) + C,(h) + C,'(h) 
h > O  

2 = x, y, z. (20 4 
r(3/4) = I .  22541 67024. (21) 

Here w is a real positive number which only affects the rates of convergence of the two 
series (in opposite senses) and is usually chosen accordingly [28]; the series in D3 
ranges over the direct lattice and excludes the case I = 0 whenj = k;  the series in 
D4 ranges over the reciprocal lattice excluding h = 0. The incomplete gamma 
function is defined by 

+m 

r(z,p) = J: t"-lexp(-t)dt (22) 

and the recurrence property [ 1, 281 

U z  + 1,  P) = z W ,  P) + p2 exp (-PI (23) 

can be used to reduce the functions with negative z to functions with positive z. 
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Simulation of a ID Heisenberg model 48 7 

We chose o to be 6.75 and truncated the series in D2 at h < 10; the other series 
was truncated according to the usual nearest image prescription. Calculations were 
carried out using the ferromagnetic potential. As a compromise between available 
computational resources and desired accuracy, we used 1000 particles. At the lowest 
temperature investigated, calculations were started from the ground state configuration; 
dimensionless reduced temperatures and potential energies are given by 

T* = kT/&, U* = ( V ) / ( N & ) ,  (24) 
where ( V )  is the mean sample energy and U* is the mean energy per particle. 
Calculations were performed in increasing temperature order, i.e. the equilibrated 
configuration produced at one temperature was used to start both the production run 
at the same temperature and the equilibration run at the next higher one. Equilibration 
runs took between 2000 and 4000 cycles (where one cycle corresponds to N attempted 
moves), and production runs took between 4000 and 10000 cycles. Subaverages for 
evaluating statistical errors were calculated over macrosteps consisting of 200 cycles. 

Calculated quantities include energy, configurational specific heat C, (obtained 
both as a fluctuational quantity and by least-square fitting and numerical differen- 
tiation of the energy), orientational correlation functions and order parameters. The 
orientational correlation functions are defined by 

GL(r) = (PL(uj - uk)), as functions of r = l j  - kl, L = 1 ,  2. (25) 

The magnetic order parameter is defined by 

where the spin-flip symmetry has been taken into account. The antiferromagnetic 
representation possesses overall orientational order but no net magnetic moment, and 
can be regarded as exhibiting secondary nematic behaviour, or as an extreme case of 
a nematogen, and investigated accordingly (the antiferromagnetic representation has 
a finite sublattice magnetization, whereas a nematic lattice model does not). We see 
from equation (7) that its nematic ordering tensors and singlet orientational distribution 
function can be evaluated directly in the ferromagnetic representation, used here for 
actual calculations. Nematic ordering tensors and associated order parameters P,  and 
F4 were defined and calculated as discussed in detail elsewhere [29-311. The singlet 
orientational distribution function was calculated at T* = 1.0, over a chain consisting 
of 10000 cycles, and we analysed every second cycle, according to the procedure 
reported elsewhere [30, 321; such a length was needed in order to achieve reasonable 
statistics. In the present case the distribution function is an even function of cos 9, 
where 9 is the angle formed by an individual molecule with the director. It can be 
expanded as [30] 

where the quantities aZk are even rank order parameters; because of the symmetry, 9 
can be restricted between 0 and 11.12 [30, 321. 

3. Results and comparison with other treatments 
Results for the potential energy, specific heat and order parameters are plotted in 

figures 1 to 3, and indicate a disordering transition taking place at temperatures 
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488 S. Romano 

0 

1 1.5 2 2.5 
T *  

Figure 1. Results for the potential energy; the relative statistical error is usually not greater 
than 0.5%. 

between 1.4 and 1.5. The energy and order parameter results suggest a continuous 
change across the transition, and the specific heat results are compatible with a weak 
discontinuity. On the whole, this seems to rule out a first order transition, and to 
suggest a second or possibly higher order one. The specific heat peaks before the 
transition, and these results show a broad qualitative similarity with the simulated 
plane rotator counterpart of the present model [22]. 

The results for E', (not reported here) are rather small, even in the ordered region: 
for example, at T* = 1.0, we found F2 = 0.317 f 0.001 and F4 = 0.030 f 0.0005; 
this is likely to be a reflection of the secondary nematic character of our model. We 
fitted the results for the (magnetic) order parameter over a certain range [TT, T:] 
(T; < 1.50, i.e. inside the ordered region) using the functional form [17] 

M(T*)  = (T,* - T*)' (28) 
and determined the two parameters (transition temperature and critical exponent) by 
means of the general non-linear least-square program MINUIT in the CERN library. 
We also tried different values of T;" and T:, and consistently found 

T,* = 1-48 f 0-02, p = 0.50 & 0.01. (29) 
The value of TF was recalculated and confirmed by fitting M(T*)  as a quadratic or 
cubic polynomial in J(T,* - T*). 

Critical temperature estimates for the king [24,25] and plane rotator [22] counter- 
parts of our potential model are shown in table 1. For comparison we also mention 
the nearest neighbour models on a simple cubic lattice defined by equations (8) and 
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T 
f 
t 
f 
X 
tv * 

* 
x 

* *  
0 

T* 

Figure 2. Configurational soecific heat: fluctuation auantitities with error bars. and results 
obtained by least-square fitting of the energy. 

Table 1. Critical temperatures calculated for the present potential model and for its Ising 
[24, 251 and plane-rotator [22] counterparts, by using exact numerical methods (series 
analysis in [24, 251; simulation in [22] and in the present work) and the molecular field 
approximation. The estimated uncertainty on T,* is of the same order (= 1 %) in all three 
cases, and the spherical model result is 4.158 1161. 

1 4.33 5-224 
2 2.16 2.612 
3 1.48 1.742 

(9) respectively. They have been studied ektensively, and their estimated transition 
temperatures are 2.89 f 0.02 for the classical Heisenberg model [33] and 1.1232 f 
0.0006 for the Lebwohl-Lasher model [3 I]; their one dimensional counterparts have 
been solved exactly, and found to disorder at all finite temperatures [2, 341. 

The disordering transition is known to be weakly first order in real nematics and 
for various short range potential models studied in three dimensions, where the order 
parameter at the transition typically ranges between 0.3 and 0.5 [29, 301. The orien- 
tational correlation functions (see figure 4) were found to decrease with distance in an 
essentially monotonic way. In the ordered region G, (r )  is well fitted by the functional 
form 

G,( r )  = cI + cz/(c3 + P). (30) 
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I- 

+ 
+ 
+ + 

+ + 
+ 
+ 
+ 
+ 
t 

+ 
+ 4 X 

X + + X 
+ X 
+ X 

XX b) ++ 
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Figure 3. Results for the order parameters: (a) M ;  (b) P,;  the results for p2 in the ordered 
region show a linear dependence on temperature. 

In the disordered region, GI should tend to zero as r tends to infinity; owing to the 
finite sample size, periodicity and long ranged nature of the potential, we found for 
G I  a long distance limit of the order of 0.0025. In order to compensate for this residual 
order, we have fitted GI by the functional form [35, 361 

G,(r)  = c, + h(r)  + h(N - r ) ;  h(r)  = c2 exp ( - sr ) / (c3  + rP) ;  0 < r < N/2 .  
(31) 

h(r) has a rather general and flexible functional form, consistent with known or 
expected behaviour of the correlation function [17-19, 371; some fitting parameters 
are reported in table 2 and inclusion of the term h(N - r) did not appreciably change 
the quality of the fit for T* 2 1.65. 

A simple molecular field approximation [17, 38, 391 can be developed for the 
magnetic system, leading to the single particle pseudopotential 

P(s) = -21UzIPl,MF cos 9, (32) 
where F13MF is determined by the usual self consistency condition 

plI.MF = L(@), L(@) = cotgh (@) - I/@, @ = 21Uo*Ipi,MF/T*. (33) 
Upon solving equation (33) numerically, is found to decrease continuously to 
zero at the temperature OM = TzMF = (2/3)1U,*l, and the transition is found to be 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
5
:
2
9
 
2
6
 
J
a
n
u
a
r
y
 
2
0
1
1



Simulation of a 1D Heisenberg model 

d 

0 

GLCr) 

M 

0 

cu 
0 

- 
0 

0 

49 1 

0 50 100 150 
r 

Figure 4. Plots of orientational correlation functions at the temperature T* = 1.35: (a) 
Gl(i-); (b) G2(r); the correlation functions G,(R) are defined in the text. 

Table 2. Fitting parameters for the correlation function GI (see equations (30) and (31)), as 
function of temperature. 

T* P S 

1.350 
1.375 
1.400 
1.420 
1.440 
1.460 
1.480 

1.500 
1,525 
1.550 
1.575 
1.600 
1.650 
1.750 
2.000 

0.59 
0.66 
0.63 
0.63 
0.60 
0.62 
0.66 

( f 0.02) 
0.69 
0.67 
0.71 
0.74 
0.74 
0.88 
0.83 
1.03 

(f 0.03) 

0.00 1 2 
0.001 5 
0.0030 
0.00 1 6 
0.0086 
0.0060 
0.0070 
0.0070 

(f 0.001) 
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492 S. Romano 

second order [38,39]. The transition temperature is over estimated by some 20 per cent; 
a similar success of the molecular field approximation is known for both Ising and 
plane-rotator counterparts of the present model (see table 1). In addition to P,,MF, we 
can define the quantity 

1’ P2(c0s 9) exp (- f / T * )  sin 9 d9 
J o  

4 , M F  = IOz exp (- p/T*) sin 9 d9 
, 

= 1 - T*/eM; (34) 

as order parameter this is also in good qualitative agreement with the simulation 
results (see figure 3). 

Critical exponents, have been calculated by various treatments, and are reported 
here for completeness sake, with the symbols as defined by Fisher and Stanley [17,37]. 
The molecular field approximation gives: 

u = 0, p = 1/2. (35) 

U k ‘ U k  = 1, k = 1,2 , . . . ,  N ,  (36) 

In the spherical model treatment [ 161, substitution of the stronger condition 

with the weaker one 
N 

enables us to solve for the thermodynamics explicitly. On the basis of Joyce’s results 
[16], the transition temperature is found to be 

6s = T:sM = 1.5918)U,*1 = 4.158 (38) 

C, = 0.5k, T* < B S ,  (39) 

and the specific heat has the constant value 

and changes continuously, but with a discontinuous slope, at the transition temperature. 
The order parameter (mean magnetic moment per spin) is predicted to be 

M = J[l - T*/&)], T* < 8s. (40) 

As for the transition temperature, the agreement between the spherical model and the 
simulation results is rather poor, in contrast with the reasonable success of the 
molecular field treatment. 

The critical properties calculated by the spherical model treatment [ 161 are 

u = 0, j = 1/2, v = 2, q = 1.5, y = 1 (41) 

(43) 

( ( T )  a (I/t)211n tI2, x ( T )  a (l/t)lln tl, t = (T* - T,*)/T,*, t > 0 (42) 

M ( t  = 0, H )  cc H’”lln Hl(critica1 isotherm). 

Critical exponents for a general (d, n, 0 )  potential model have been obtained by 
several authors via renormalization group techniques; the results for d = 1 ,o  = 1/2 
and arbitrary n are [14, 151 

v = 2, q = 1.5, y = 1, Vn (44) 

cc = 0 up to order l/n (45) 
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Simulation of a ID Heisenberg model 493 

and 

g(T) cc (l/t)'Iln t12"', x ( T )  cc (l/t)lln tl"', n' = (n + 2)/(n + 8), (46) 
in agreement with the spherical model in the limit n -+ 00. Combining the renormal- 
ization group results and the scaling relation [17, 371 

o r + 2 f l + y  = 2, (47) 
we also obtain 

fl = 1/2 

up to order I/n. At the transition temperature, the correlation function G is predicted 
to possess the asymptotic power-law behaviour [17, 371 

G,(r) cc I-"-'+") (49) 
and both spherical model and renormalization group treatments give q = 1.5. Our 
simulation results cannot claim to allow an accurate determination of the critical 
quantities, which requires larger sample sizes (and greater computational resources). 
Yet it should be noted that a crude conjecture based on the results in table 1 gives 
s = 0, p = 0.66 f 0.02 at the transition, or q = 1.66 i- 0.02, i.e. a very rough 
approximation to the renormalization group result, whereas we find a reasonable 
estimate for f l .  

As for the singlet orientational distribution function (see figure 5),  the coefficients 
a2k in equation (27) were calculated directly from a 201 -bin histogram [32], which was 
smoothed by regrouping its bins and reducing their number to 41. As a double-check, 
the order parameters were recalculated from the smoothed histogram via a linear 
least-square fit. We obtained a rather good fit by truncating the expansion at k = 5, 
and found a variance of 0.0004 and the following values 

u2 = 0.316 f 0.001, 

a, = 0.029 f 0401, 

a6 = 0.0002 Ifi 0.0004, 

a8 = -0.001 i- 0.0004, 

a,, = -0.0008 rt 0.0003. 

Truncation at k = 2 gave a variance of 0.0009, and the same values for a2 and a,, in 
good agreement with those obtained via the ordering tensors and a far better statistics, 
i.e. p2 = 0.317 i- 0.001 and p,  = 0.030 f 0.0005. The molecular field treatment of 
nematic models predicts for S(9) an expression of the form [30, 391 

r 1 

where the coefficients b2k are also predicted to depend on the order parameters; 
truncation of the series in equation (50) at k < 2 gave a variance of 0.004, and 
inclusion of higher-order terms up to b, reduced it to 0.0004. This contrasts with other 
simulated short-range nematic potential models in three dimensions, and with 
experimental data on real ones [40-421, where a good fit was obtained by truncating 
the series in equation (50) at k = 1 .  The simulation results point to the conclusion 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
5
:
2
9
 
2
6
 
J
a
n
u
a
r
y
 
2
0
1
1



494 S. Romano 

I 
01 I I 
0 0.5 1 

cos 0 

Figure 5. Plot of the singlet orientational distribution function at T* = 1 

that the long range character of the potential produces an overall molecular field-like 
behaviour of the system. 

The present calculations were carried out on, among other machines, a VAX 8350 
computer, belonging to the Sezione di Pavia of Istituto Nazionale di Fisica Nucleare 
(INFN); computer time on a CRAY machine was allocated by the Italian Consiglio 
Nazionale delle Richerche (CNR). The author wishes to thank Professor G. R. Luck- 
hurst (Department of Chemistry, University of Southampton) for helpful discussion 
and suggestions. 
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